ProtozoaDB: comparative genomics approaches for the study of protozoan species

Alberto M. R. Dávila Email: davila@fiocruz.br

Laboratório de Biologia Computacional e Sistemas

Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brasil.

Background

> Pathogenic protozoan species are commonly studied because they are a major cause of mortality and morbidity in humans and domestic animals throughout the world.

> We have developed an automatic methodology to reconstruct the phylogenetic species tree in Protozoa integrating different phylogenetic algorithms and programs.

> We demonstrate the utility of a supermatrix approach to construct phylogenomic trees using 31 universal representative orthologs.

> These universal orthologs are involved in metabolic pathways, thus might potentially provide some extra information for the understanding of the phylogenetic relationships and evolutionary processes of Protozoa.

> Illness caused by parasitic Protozoa are a major cause of disease worldwide, but because they are concentrated in low socioeconomic parts of the world, they receive relatively little attention from the pharmaceutical industry and major scientific funding agencies.

> Of the ten diseases targeted as research priorities by the World Health Organization's Special Program for Research and Training in Tropical Diseases (http://www.who.int/tdr) four are caused by protozoan parasites (malaria, leishmaniasis, Chagas disease, African tripanosomiasis).

> These diseases and other less dangerous ones (e.g. amoebiasis and trichomoniasis) are having an alarming increase of refractoriness cases to the main treatment. Treatment failure has potentially a multifactorial origin with one of the major concerns being drug resistance.

> Phylogenomics is being intensively used in the "Post Genomic Era". Many different phylogenetic trees have been published on the basis of different models of sequence evolution and utilization of different parameter settings and algorithms.

Introduction

Trypanosoma cruzi

Leishmania major

Plasmodium falciparum

Introduction

TRENDS in Ecology and Evolution Vol.20 No.12 December 2005

Although, the rRNA and other single genes have been extremely valuable for phylogenetic studies but they have their limitations.

Chaudhary (2005) and Keeling (2005) showed results on available sequencing data.

Phylogenetic analysis defined five supergroups of eukaryotes:
(i) the plant and red/green algal lineage;

(ii) a clade comprised of animals, fungi, slime molds and amebozoans;

and three groups that are entirely protozoan:

(iii) chromalveolates,

(iv) excavates and

(**v**) rhizaria.

Universal Orthologs:

Ciccareli et al (2006): UO for tree of life

Serra et al (2008): Orthosearch

Toward Automatic Reconstruction of a Highly Resolved Tree of Life

Francesca D. Ciccarelli,^{1,2,3*} Tobias Doerks,^{1*} Christian von Mering,¹ Christopher J. Creevey,¹ Berend Snel,⁴ Peer Bork^{1,5}†

We have developed an automatable procedure for reconstructing the tree of life with branch lengths comparable across all three domains. The tree has its basis in a concatenation of 31 orthologs occurring in 191 species with sequenced genomes. It revealed interdomain discrepancies in taxonomic classification. Systematic detection and subsequent exclusion of products of horizontal gene transfer increased phylogenetic resolution, allowing us to confirm accepted relationships and resolve disputed and preliminary classifications. For example, we place the phylum Acidobacteria as a sister group of δ -Proteobacteria, support a Gram-positive origin of Bacteria, and suggest a thermophilic last universal common ancestor.

R econstructing the phylogenetic relationships among all living organisms is one of the fundamental challenges in biology. Numerous attempts to derive a tree of life using various methods have been published [for a review, see (1)], and its principal existence has been questioned recently (2, 3). Moreover, even under the assumption of a tree of life, numerous groupings and taxonomic entities still remain heavily debated, and the advent of molecular and genomic data has increased the variety of classifications rather than reducing the problem (1). Theoretical and practical limits to reconstructing a tree of life have been put forward, such as the insufficient amount of discriminating characters available, even in information-rich genomic data sets (4), and the computing resources required to cope with large numbers of species (1). Furthermore, there are factors that hamper accurate reconstruction of phylogenetic trees regardless of the methods used, such as sampling biases of species included (5) and dilution of phylogenetic signal by horizontal gene transfer (HGT) (δ), the

¹European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany. ²Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy. ³Institute of Molecular Oncology Foundation, Fondazione Italiana per la Ricerca sul Cancro, Via Adamello 16, 2013 9 Milan, Italy. ⁴Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Toernooiveld 1, 6525 ED, Nijmegen, Netherlands. ⁵Max Delbrück Centrum, 13092 Berlin-Buch, Germany.

*These authors contributed equally to this work.

†To whom correspondence should be addressed. E-mail: peer.bork@embl.de

Science. 2006 Mar 3;311(5765):1283-7.

Selection and preparation of marker gene families

> We based our methodology on Ciccarelli *et al.* (2006) study for the selection and construction of the species tree.

> Thirty-one universal orthologous (UO) genes were downloaded in fasta format from GenBank and then aligned using MAFTT (version 5.861)

Selection and preparation of marker gene families for protozoan species trees

Hidden Markov Models (HMM) profiles were constructed for the **31 UO** (local database) set and queried against all **Protozoa sequences** available in Refseq (RefSeq-release35.catalog-01/11/2009) and Genbank (NCBI-Flat File Release 172.0-06/15/2009).

> HMM profiles were created (**hmmbuild**) and calibrated (**hmmcalibrate**) using HMMER version 2.3.2 and searches done using **hmmpfam** with e-value "1e-5" as cut-off.

>Those best hmmpfam hits of each of the 31 UO against protozoan genomes were used to construct individual multiple alignments (Mafft v5.861).

> Methodology 1 (M1):

Those individual alignments were **concatenated**, then resulting in a global supermatrix of 21,260 positions in a total of 74 species.

This supermatrix was used to generate a tree with PHYML using 100 bootstrap replicates and the JTT matrix.

> Methodology 2 (M2):

Those individual alignments were trimmed using TrimAl v1.2 aiming to eliminate the most variable regions of each of them. Those remaining conserved blocks were then concatenated, resulting in a global supermatrix of 12,807 positions in a total of 74 species.

 \checkmark This supermatrix was used to generate a tree with PHYML using 100 bootstrap replicates and the JTT matrix.

Concatenated genes aligned

Figure 2. Algorithm for Supermatrix versus Supertree construction.

We reconstructed the protozoan species tree using several automated bioinformatics tools: downloaded 31 universal UO from GenBank, built HMM profiles with them, searched those profiles in protozoan genomes (43 species) and related species (31 species) showing different level of completeness/coverage.

> The species tree was formed by 3 major clades that were related to 3 groups of data:

(i) 26 species composed of at least 80% of UO (25/31) called G1,

(ii) 12 species composed of 50-79% (15-24/31) of UO called G2 and

(iii) 36 species composed of less than 50% (1-14/31) of UO called G3.

Figure 1. Phylogenomic supermatrix radiation tree of protozoan using masked sequences with TrimAl. Was used a supermatrix of 12,807 positions in the total 74 protozoan species. Maximum likelihood tree was constructed with Phyml, JTT as evolutionary model and bootstrap 100. (C1 is red, C2 blue and C3 black).

> C1 was composed by only protozoan species, C2 was composed by rodophyta, cryptophyta, glaucocystophyceae, stramenopiles species, and C3 was composed by some species of C1 and C2.

> C1 presented monophyly of Protozoa, C2 presented monophyly of species related to Protozoa, and C3 polytomy of some Protozoa and related species. The more UO included in the supermatrix the better was the tree robustness inside the 3 clades.

Figure 2 shows the comparison of trees using no masked (M1) and TrimAl masked (M2) sequences. Both methodologies showed very similar topologies, however the tree utilizing TrimAl masked sequences showed higher bootstrap values. Figure 1 is the same tree using TrimAl masked sequences but presented as radiation tree.

Figure 2. Phylogenomic supermatrix trees of protozoan using total sequences and conserved blocks (TrimAl) sequences. Were used supermatrixes of 12,807 and 21,260 positions respectively in 74 species. Maximum likelihood tree was constructed with Phyml, JTT as evolutionary model and bootstrap 100. (C1 is red, C2 blue and C3 black).

Most variable regions trimmed (>80 UO): Clade 1 (zoom)

> We have presented a phylogenomic-based overview for Protozoa. Relationships between protozoan groups are in agreement with previous studies, showing monophyly for protozoan.

> On the other hand, phylogenetic information inferred from C3 is questionable due to incomplete genomes, suggesting that using less than 15 universal UO for phylogenomic reconstruction is not reliable.

> The inclusion of more data/genes is necessary to obtain a robust tree.

> Our phylogenomic-based methodology using a supermatrix approach proved to be reliable with protozoan genome data, suggesting that (a) more universal UO used the better, and (b) using the entire UO sequence or just a conserved block of it produce similar reliable results.

> Finally, we need to investigate further if this methodology could be extrapolated or reproduced to other taxonomic groups.

ProtozoaDB http://protozoadb.biowebdb.org

🧃 2 Microsoft... 👻 🚎 157.86.176.... 🛛 🕙 ProtozoaDB: ...

🔁 gkm820v1.p...

Received August 15, 2007; Revised September 17, 2007; Accepted September 18, 2007

🛅 paper-nar-pr...

🦽 ڬ 🛸 🏓 🙆 🕒

🚽 start

🚞 ppt

Latest Version: 1.0 beta (August 2010)

RROT	ZOAdb								
By name	cyclophilin		Go						
Results					Details				
Query Results	5			K	ProtozoaDB	PDB	KEGG	NCBI	aquaporin 9
Accession Number	Name	Organism	Details		+ ProtozoaDB				
AAB86601.1	cyclophilin	Entamoeb histolytic	details	D	+ Orthologs by O	rthoSearch [go to paper]			ntymerase II large subCyclophilin
AAC24632.1	cyclophilin type peptidyl- prolyl cis-trans isomerase, putative	Leishmania major	<u>details</u>		+ Conserved Dom	nains (Top 10 rpsBlast)			fibrillarin
AAC41390.1	cyclophilin	Plasmodium falciparum	details		+ Human Proteor	ne Similarity (Top 10 Blas	tp)		
AAC46975.1	cyclophilin	Plasmodium falciparum	details		+ Ortholoos by O	rthoMCL [go to paper]			
AAD55769.1	cyclophilin	Plasmodium falciparum	details		+				
AAF05985.1	cyclophilin A	Trypanosoma cruzi	<u>details</u>		Protozoa EST S	imilarity (Top 10 Blastx)			
		Toussesses							

PROTOZOAdb

cyclophilin

By name

Go

Results

Accession Number	Name	Organism	Detail
AAB86601.1	cyclophilin	Entamoeba histolytica	details
AAC24632.1	cyclophilin type peptidyl- prolyl cis-trans isomerase, putative	Leishmania major	<u>detail</u>
AAC41390.1	cyclophilin	Plasmodium falciparum	<u>details</u>
AAC46975.1	cyclophilin	Plasmodium falciparum	<u>details</u>
AAD55769.1	cyclophilin	Plasmodium falciparum	<u>details</u>
AAF05985.1	cyclophilin A	Trypanosoma cruzi	<u>details</u>
AAF89247.1	cyclophilin	Trypanosoma cruzi	details
AAF89277.1	cyclophilin	Trypanosoma cruzi	<u>details</u>
AAM21054.1	cyclophilin	Entamoeba histolytica	<u>details</u>
AAN35754.1	cyclophilin, putative	Plasmodium falciparum	<u>detail</u>
AAN36113.1	cyclophilin, putative	Plasmodium falciparum	<u>detail</u>
AAN36236.1	cyclophilin	Plasmodium falciparum	detail:
AAN36836.1	cyclophilin, putative	Plasmodium falciparum	details
	peptidyl-prolyl cis-trans	Leishmania	10000

Details

aquaporin

Deneral Denerality							-		aquaporin .
query Results					<u>NP_066953.1</u> pe	eptidyl-prolyl cis-trans isomerase A [Homo sapiens]	218.0	3e-57	addressed a
Accession	Name	Organism	Details		NP_005720.1 sa	eptidyl-prolyl cis-trans isomerase F mitochondrial precursor [Homo ppiens]	216.0	8e-57	ada a
The second second	2.54	Entamoeba			<u>NP_000933.1</u> pe	eptidyl-prolyl cis-trans isomerase B precursor [Homo sapiens]	215.0	2e-56	cyclophilin
AAB86601.1	cyclophilin	histolytica	details		NP_006338.1 pe	eptidyl-prolyl cis-trans isomerase H [Homo sapiens]	213.0	5e-56	RNA polymerase il-large sub
AAC24632.1	cyclophilin type peptidyl- prolyl cis-trans isomerase, putative	Leishmania major	<u>details</u>		Orthologs by	OrthoMCL [go to paper]			hypothetical protein.
AAC41390.1	cyclophilin	Plasmodium falciparum	<u>details</u>		Group ID Desc Group cyclo	ription philin			
AAC46975.1	cyclophilin	Plasmodium falciparum	<u>details</u>						
AAD55769.1	cyclophilin	Plasmodium falciparum	details						
AAF05985.1	cyclophilin A	Trypanosoma cruzi	<u>details</u>						
AAF89247.1	cyclophilin	Trypanosoma cruzi	<u>details</u>						
AAF89277.1	cyclophilin	Trypanosoma cruzi	<u>details</u>						-
AAM21054.1	cyclophilin	Entamoeba histolytica	details	(Protozoa EST	Similarity (Top 10 Blastx)			
AAN35754.1	cyclophilin, putative	Plasmodium falciparum	details		Accession	Description	Score	eValue	
AAN36113.1	cyclophilin, putative	Plasmodium	details	1	CX086982	histolytica cDNA, mRNA sequence.	350.0	6e-97	
AAN36236.1	cyclophilin	Plasmodium	details	1	CX097413	EHAH646TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	350.0	7e-97	
AAN36836.1	cyclophilin, putative	Plasmodium	<u>details</u>		CX089961	EHAE652TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	347.0	5e-96	
AAZ14584.1	peptidyl-prolyl cis-trans isomerase (cyclophilin),	Leishmania major	details	Ī	CX096169	EHAGO17TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	338.0	2e-93	
AAZ14699.1	peptidyl-prolyl cis-trans isomerase	Leishmania major	details	4	CX082315	EHAAU72TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	336.0	8e-93	

Dávila A.M. et al. ProtozoaDB: dynamic visualization and exploration of protozoan genomes. Nucleic Acids Research, 10:1-6, November 2007.
BiowebDB Consortium

Methodology

DNA extraction

PCR using 33 pair of designed primers Agarose gel visualization

PCR product purification

Sequencing

Annotation

Phylogenetic analyses

Forward primer (COG0092F) in the multiple alignment

Reverse primer (COG0092F) in the multiple alignment

۲	Instr	Homes: pipeline ^M Mozilla Firefox	2	diogo1@genome: ~/COG/pipe_rails
<u>File E</u>	t <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp			
(🗸 💰 🔀 🚺 间 http://localhost:3000/homes/pipeline			☆ 🗸 Google
🗎 Sma	t Bookmarks 🔻 📷 Most Visited 🔻 🐢 Getting Started 🔊 Latest BBC Headli 👻 🔊 Biowe	odb.org - Bi 👻 🚓 Firefox Add-ons		

Pipeline Result's

Results		
Input File:	file in	
Primer3 Result File:	Primers	
COGnitor Result file:	COGnitor file	
KOGnitor Result file:	KOGnitor file	
Protein file:	<u>Protein file</u>	🛃 /temp/20100408131108/teste.fasta.validate.mafft 🗖 🗖
Sequences Validates:	Validates Sequences	File Edit Select View Format Colour Calculate Help
View Mafft result with Jalview	Start Jalview	20 30 40 50 60 Gill 83231 028/reflXM_646460.2//1-1773 ATGCTTTCALGAATGAATGAATGAATGAATGCTGAAGCTGGTGCGCTGAAGGAGTGGTGCGCTGAAGGAGTGGTGCGCTGAAGGAGTGGTGCGCTGAAGGAGTGGTGCGCTGAAGGAGTGGTGCGGCTGAAGGAGTGGTGCGGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCTGAAGGAGTGGCGCGCGGCTGAAGGAGTGGCGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGC
View Mafft File Result	Mafft File	G1/146909221/er/XM_021465330.1//2-2079 ATGT GCGCCGCT GCCGCT GCCGCT GCCGCT GCCGCT GGC GCCGGAGGAGGAGGCT GCCGCGGCGCCGGAGGAGGCT GCCGCGGCGGCCGGCGGCGGCGGCGGCGGCGGCGGCGGC
Consense sequence of Mafft	Consense file	CI/12/54758/FE/IXM.823190.1//2-2079
Conserved Blocks of Gblocks	Gblocks file	
Open Conserved Blocks of Gblocks with Valview	Start Jalview	
Conserved Aligment	Gblocks file aligment	
Picture of Gblocks	Gblocks Picture	
Consense of Conserved GBlocks	Consense of Gblocks file	
To save a result file right-click the file link in the run cognitor parameter: -a e-value cutoff: -e1e-5 score cutoff: -s50 run mafft parameter: -m run consense parameter: -c run collocks parameter: -b	above table and choose "Sav	"Sav
run gblocks consense parameter: -d type of file primer3: use Consense of mafft file t is verbose: <u>Results</u>	o run primer3	Consensus AT GT+CGC+GCT+CCGCTA+GGC+AAT GT GGAGCT GGCGCT GAAGGA+ATT GT+CAG+CGACCATT Sequence 1 ID: Gi 183231028 ref XM_646460.2 Nucleotide: Cytosine (8)

Genotyping system visualization (multiple alignment) using Jalview

Phylogenetic tree inferred with Maximum Likelihood for KOG0400 (Ribosomal protein S15P/S13E). 1000 replications (*bootstrap*). Sequences from genbank and generated with our primers are shown. Methodology: short version

OrthoSearch Workflow (Orthologs inference)

OrthoSearch results

Parasite	Total <u>Hits</u>	Confirmed annotation (Interpro)	Partial annotations (re)annotated	Hypothetical protein (re)annotated
T. cruzi	147	141	6	12
T. brucei	135	129	6	11
L. major	165	157	9	14
P. falciparum	111	107	6	12
E. histolytica	98	90	5	6

Protozoan Orthologs (OrthoMCL-based)

* Some can be protozoa-specific

Deneral Denerality							-		aquaporin .
query Results					<u>NP_066953.1</u> pe	eptidyl-prolyl cis-trans isomerase A [Homo sapiens]	218.0	3e-57	addressed a
Accession	Name	Organism	Details		NP_005720.1 sa	eptidyl-prolyl cis-trans isomerase F mitochondrial precursor [Homo ppiens]	216.0	8e-57	ada a
The second second	2.54	Entamoeba			<u>NP_000933.1</u> pe	eptidyl-prolyl cis-trans isomerase B precursor [Homo sapiens]	215.0	2e-56	cyclophilin
AAB86601.1	cyclophilin	histolytica	details		NP_006338.1 pe	eptidyl-prolyl cis-trans isomerase H [Homo sapiens]	213.0	5e-56	RNA polymerase il-large sub
AAC24632.1	cyclophilin type peptidyl- prolyl cis-trans isomerase, putative	Leishmania major	<u>details</u>		Orthologs by	OrthoMCL [go to paper]			hypothetical protein.
AAC41390.1	cyclophilin	Plasmodium falciparum	<u>details</u>		Group ID Desc Group cyclo	ription philin			
AAC46975.1	cyclophilin	Plasmodium falciparum	<u>details</u>						
AAD55769.1	cyclophilin	Plasmodium falciparum	details						
AAF05985.1	cyclophilin A	Trypanosoma cruzi	<u>details</u>						
AAF89247.1	cyclophilin	Trypanosoma cruzi	<u>details</u>						
AAF89277.1	cyclophilin	Trypanosoma cruzi	<u>details</u>						-
AAM21054.1	cyclophilin	Entamoeba histolytica	details	(Protozoa EST	Similarity (Top 10 Blastx)			
AAN35754.1	cyclophilin, putative	Plasmodium falciparum	details		Accession	Description	Score	eValue	
AAN36113.1	cyclophilin, putative	Plasmodium	details	1	CX086982	histolytica cDNA, mRNA sequence.	350.0	6e-97	
AAN36236.1	cyclophilin	Plasmodium	details	1	CX097413	EHAH646TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	350.0	7e-97	
AAN36836.1	cyclophilin, putative	Plasmodium	<u>details</u>		CX089961	EHAE652TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	347.0	5e-96	
AAZ14584.1	peptidyl-prolyl cis-trans isomerase (cyclophilin),	Leishmania major	details	Ī	CX096169	EHAGO17TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	338.0	2e-93	
AAZ14699.1	peptidyl-prolyl cis-trans isomerase	Leishmania major	details	4	CX082315	EHAAU72TR E. histolytica Normalized cDNA library Entamoeba histolytica cDNA, mRNA sequence.	336.0	8e-93	

Dávila A.M. et al. ProtozoaDB: dynamic visualization and exploration of protozoan genomes. Nucleic Acids Research, 10:1-6, November 2007.
BiowebDB Consortium

PRIMER19:

KOG1487 (GTP-binding protein DRG1 - ODN superfamily)

COG1163 (Predicted GTPase)

PRIMER20:

KOG0217 (Mismatch repair ATPase MSH6 - MutS family)

COG0249 (MutS-like ATPases involved in mismatch repair, family 2)

PRIMER23:

KOG0291 (WD40-repeat-containing subunit of the 18S rRNA processing complex)

COG2319 (WD40 repeat protein)

PRIMER143:

COG0143 (Methionyl tRNA Synthetase)

PRIMER172:

COG0172 (Methionyl tRNA Synthetase)

	PRIMER 19	PRIMER 20	PRIMER 23	PRIMER 143	PRIMER 172
L. mexicana	x	x	x	x	-
L. brasiliensis	x	x	x	x	x
L. major	x	x	x	x	x
L. Chagasi	x	x	x	x	x
L. amazonensis	-	x	x	x	x
L. guyanensis	-	x	x	x	x
T. SKUZI	x	x	x	x	x
T. BRUCEL	x	x	x	-	-
T. SXARAL	-	x	x	x	-
T. Xixax	-	x	x	x	x
T. Congolense	-	x	-	x	-

e <mark>e</mark> la
ProtozoaDB Projects
<u>Grid Blast</u>
<u>Grid-RPS Blast</u>
Grid-OrthoMCL
<u>Grid-ArpaMPI</u>

Or load it from disk (Choose	File)) no fil	e sel	ected
------------------------------	--------	----------	-------	-------

Optional parameters

Threshold	Expect	<u>Matrix</u>	Filter	Descriptions	Alignments	<u>Hits</u>	Gapped
0	10	BLOSUM-62	default 🛟	500 🛟	250 🛊	0	yes 🛟
Algnment Vi	ew Option						
pairwise			\$				
218	8 3						

88	00000000	POGE P	PARA	Star .
A	Automatic	SAR!	X ilen	as the
R	for Phylogenomic	(A CA	3/120	-+
A	Analisys			
	1	a No	141	The second second
Search t	ype : DNA sequences	\$		
Enter wi	th the sequence in the fo	mat FASTA :		
0	multifacto file e Ca		//	
Or selec	multifasta file : Choose	File no file selec	ted	
nucleoti	deo			
PHYA	IL : Ores ONOt			1
	the same as the same reading and the same			
Evol	itionary model : HKY	÷ (
Evol	strap [10 - 1000]: 100		Venters	
Evol Boot Subs	strap [10 - 1000]: 100 titution Rate Categories		vertices.	

About

Trial

Projects Avaliable

Pipeline

Team

FAO

Welcome to STINGRAY

Version 2.0 Beta - Feb 17, 2009

Password:	guest	Ema	311:	
•••••	Passwo	ord:		
Enter	•••••			
Lincer	Enter			
		W3C	XHTML	

The **System for Integrate Genomic Resources and Analyses (STINGRAY)** is a user-friendly web-based system designed to analyse genomic data in the context of a pipeline. It was developed for Linux systems using Perl, Bioperl, CGI, Apache and MySQL. EST and GSS data can especially benefit using the system since it can accept a) chromatograms, b) download of sequences from GenBank, c) FASTA files stored locally or d) a combinations of all 3 STINGRAY uses the phred/phrap package to process chromatograms, evaluate quality of traces and remove vector contamination. Clusterization is done using the CAP3 program. Sequences are submitted to Blast analyses with database choosen by the user. Conserved domain searches are also performed using the CDD tool of NCBI. Interpro have been implemented in the pipeline as well, and tRNA-Scan, Psort, SignalP and OrthoMCL are avaliable too. Beside that, it is possible to find genes or ORFs using GLIMMER, GlimmerHMM and by Orthologous Groups aproach (ORF by COGs), and then search the analysis mentionated above. Once all the above similarities searches have been performed, the user can select some contigs and results for multiple alignment using ClustalW and phylogeny analyses using Phylip. STINGRAY offers flexibility to the users by allowing them to configure the parameters of the used programs. All the results can be filtered according to algorithm and database used, facilitating user visualization. Furthermore, statistics and graphical results of the all analysis and processed chromatograms are presented.

Publications

Contact

Better performance in Firefox

Collaborators

Marta Mattoso M. Luiza Machado Campos Edmundo C. Grisard "Yoko" Cavalcanti

Students

Sérgio Serra Kary Soriano Ocaña Fabio Coutinho Edgar Sarmiento Diogo Tschoeke Rafael Cuadrat Daniel Loureiro Rodrigo Jardim Luisa Pitaluga

Funding

CNPq FINEP CAPES FAPERJ European Union (EELA-2)

Recent collaborators:

Elisa Cupolillo Claudia D. Levy