Proteomic approaches for the study of protozoa parasites

PATRICIA CUERVO ESCOBAR

Laboratório de Pesquisa em Leishmaniose Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil

ICCC-12 Conference 2010 Florianópolis, SC, 26 September-01 October, 2010

120 The World Health Report 2004

Annex Table 2 Deaths by cause, sex and mortality stratum in WHO regions,^a estimates for 2002

Schistosomiasis

Lymphatic filariasis

Leishmaniasis

Onchocerciasis

0.0

0.1

0.0

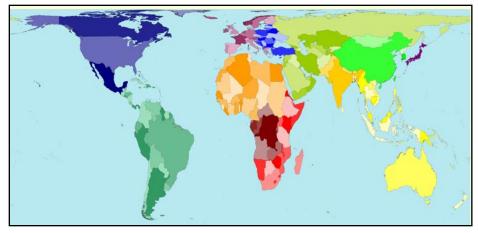
0.0

	SEX°						A	RICA	THE AMERICAS			
Cause ^d							Mortal	ity stratum	Mortality stratum			
	Both sexes 6 224 985		м	Males		Females		High child, very high adult	Very low child, very low adult		High child, high adult	
Population (000)			3 1 31 0 52		3 093 933		311 273	360 965	333580	445 161	73810	
	(000)	% total	(000)	% total	(000)	% total	(000)	(000)	(000)	(000)	(000)	
TOTAL Deaths	57 029	100	29 891	100	27 138	100	4 657	6 007	2 720	2 701	541	
 Communicable diseases, maternal and perinatal conditions and 												
nutritional deficiencies	18 324	32.1	9 365	31.3	8 959	33	3 245	4 426	167	482	227	
nfectious and parasitic diseases	10 904	19.1	5 795	19.4	5 109	18.8	2 211	3 414	69	195	133	
Tuberculosis	1 566	2.7	1 030	3.4	536	2.0	143	205	1	26	19	
STIs excluding HIV	180	0.3	91	0.3	89	0.3	41	52	0	1	1	
Syphilis	157	0.3	84	0.3	72	0.3	39	50	0	1	0	
Chlamydia	9	0.0	0	0.0	9	0.0	1	0	0	0	0	
Gonorrhoea	1	0.0	0	0.0	1	0.0	0	0	0	0	0	
HIV/AIDS	2 777	4.9	1 447	4.8	1 330	4.9	479	1 616	14	50	39	
Diarrhoeal diseases	1 798	3.2	939	3.1	859	3.2	351	356	2	34	21	
Childhood diseases	1 124	2.0	563	1.9	562	2.1	308	219	0	1	4	
Pertussis	294	0.5	147	0.5	147	0.5	78	53	0	0	3	
Poliomyelitise	1	0.0	0	0.0	0	0.0	0	0	0	0	0	
Diphtheria	5	0.0	3	0.0	3	0.0	1	1	0	0	0	
Measles	611	1.1	306	1.0	305	1.1	180	131	0	0	0	
Tetanus	214	0.4	107	0.4	107	0.4	49	35	0	0	0	
Meningitis	173	0.3	90	0.3	83	0.3	8	12	1	8	9	
Hepatitis B ^f	103	0.2	71	0.2	32	0.1	10	10	1	3	2	
Hepatitis C ⁴	54	0.1	35	0.1	18	0.1	4	4	5	2	0	
Malaria	1 272	2.2	607	2.0	665	2.5	557	579	0	1	0	
Tropical diseases	129	0.2	79	0.3	50	0.2	28	28	0	12	4	
Trypanosomiasis	48	0.1	31	0.1	17	0.1	24	23	0	0	0	
Chagas disease	14	0.0	8	0.0	7	0.0	0	0	0	11	4	

0.0

0.1

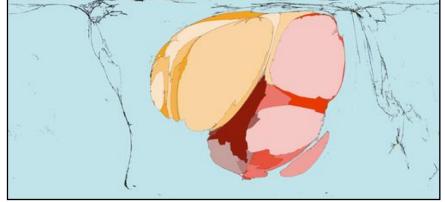
0.0


0.0

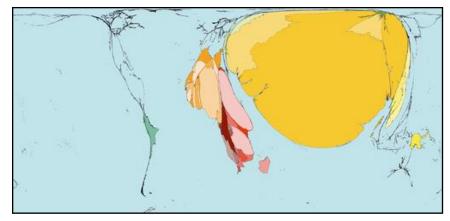
0.0

0.1

0.0

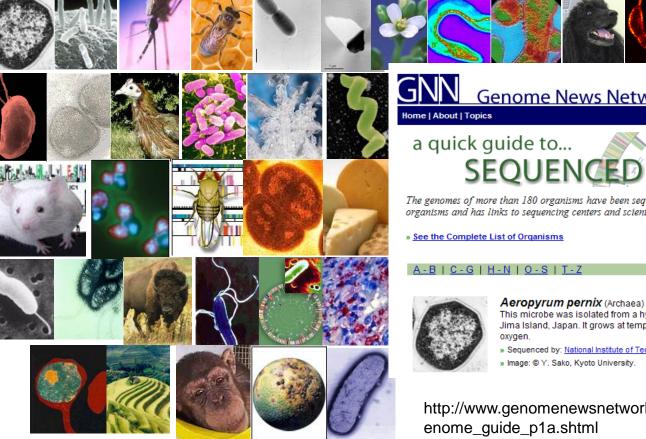

0.0

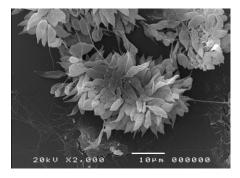
Territories are sized in proportion to the absolute number of people who died from each disease in one year.


http://www.worldmapper.org/

Sleeping sickness

Chagas disease


Leishmaniasis



Annex Table 3 Burden of disease in DALYs by cause, sex and mortality stratum in WHO regions,^a estimates for 2002

Figures computed by WHO to assure comparability;^b they are not necessarily the official statistics of Member States, which may use alternative rigorous methods.

rigares compared by who to assure compar		SEX ^e							T	THE AMERICAS			
Cause ^d							Mortali High child,	ity stratum	Mortality stratum				
		Both sexes		Males		Females		High child, very high adult	Very low child, very low adult		High child, high adult		
Population (000)	6 224	1 985	3 13	1 052	3 09.	3 933	311 273	360 965	333 580	445 161	73810		
	(000)	% total	(000)	% total	(000)	% total	(000)	(000)	(000)	(000)	(000)		
TOTAL DALYs	1 490 126	100	772 912	100	717 213	100	160 415	200 961	46 868	81 589	17 130		
 Communicable diseases, maternal and perinatal conditions and nutritional deficiencies 	610 319	41.0	296 796	38.4	313 523	43.7	115 317	150 405	3 106	16 334	7 210		
Infectious and parasitic diseases	350 333	23.5	179 307	23.2	171 025	23.8	75 966	111 483	1 228	6719	3 944		
Tuberculosis	34 736	2.3	21 905	2.8	12 831	1.8	3 786	5 480	12	506	410		
STIs excluding HIV	11 347	0.8	3 855	0.5	7 492	1.0	1 930	2 444	75	487	69		
Syphilis	4 200	0.3	1 970	0.3	2 230	0.3	1 028	1 417	2	56	20		
Chlamydia	3 571	0.2	302	0.0	3 269	0.5	364	428	55	241	15		
Gonorrhoea	3 365	0.2	1 473	0.2	1 892	0.3	520	573	16	183	31		
HIV/AIDS	84 458	5.7	42 663	5.5	41 795	5.8	14 620	49 343	454	1 594	1 163		
Diarrhoeal diseases	61 966	4.2	32 353	4.2	29 614	4.1	11 548	11 689	106	1 494	750		
Childhood diseases	41 480	2.8	20 713	2.7	20 767	2.9	11 061	7 934	54	177	162		
Pertussis	12 595	0.8	6 283	0.8	6 312	0.9	3 078	2 165	52	163	146		
Poliomyelitis ^e	151	0.0	76	0.0	74	0.0	11	4	3	6	1		
Diphtheria	185	0.0	96	0.0	89	0.0	24	24	0	2	7		
Measles	21 475	1.4	10 727	1.4	10 748	1.5	6 328	4 587	0	0	0		
Tetanus	7 074	0.5	3 530	0.5	3 543	0.5	1 620	1 155	0	6	8		
Meningitis	6 192	0.4	3 082	0.4	3 110	0.4	394	497	43	356	280		
Hepatitis B ^f	2 170	0.1	1 459	0.2	711	0.1	302	280	20	56	38		
Henatitis C ^f	1 004	0.1	668	0.1	336	0.0	120	122	77	29	1		
Malaria	46 486	3.1	22 243	2.9	24 242	3.4	20 070	20 785	0	86	25		
Tropical diseases	12 245	0.8	8 273	1.1	3 973	0.6	2 939	2 743	9	604	178		
Trypanosomiasis	1 525	0.1	966	0.1	559	0.1	744	740	0	0	0		
Chagas disease	667	0.0	343	0.0	324	0.0	0	0	8	483	171		
Schistosomiasis	1 702	0.1	1 020	0.1	681	0.1	621	713	0	74	0		
Leishmaniasis	2 090	0.1	1 249	0.2	840	0.1	208	175	1	38	5		
Lymphatic filariasis	5 777	0.4	4 413	0.6	1 364	0.2	976	1 035	0	9	1		
Onchocerciasis	484	0.0	280	0.0	204	0.0	390	80	0	1	1		

Genome News Network

a quick guide to... SEQUENCED GENO

The genomes of more than 180 organisms have been sequenced since 1995. The Quick Guide includes descriptions of these organisms and has links to sequencing centers and scientific abstracts.

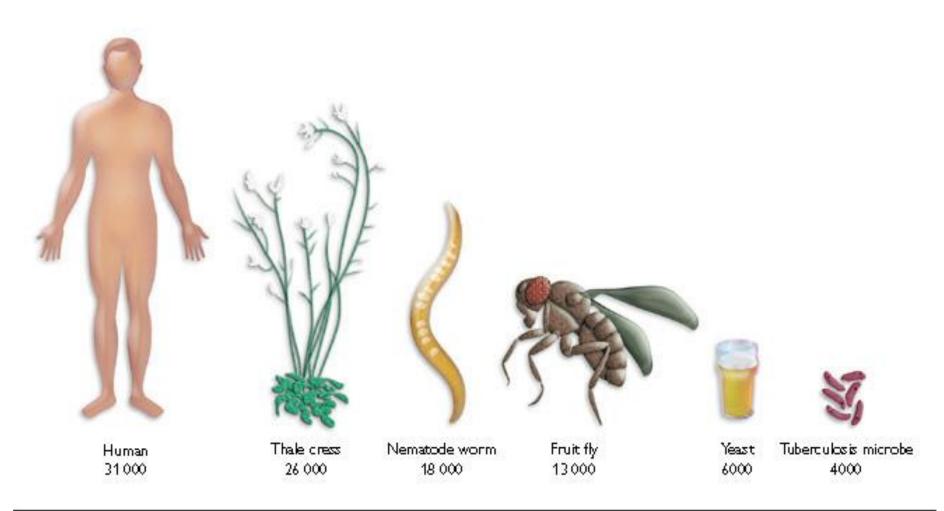
» See the Complete List of Organisms

Written by Kate Ruder and Edward R. Winstead Created for GNN by Mary S. Gibbs

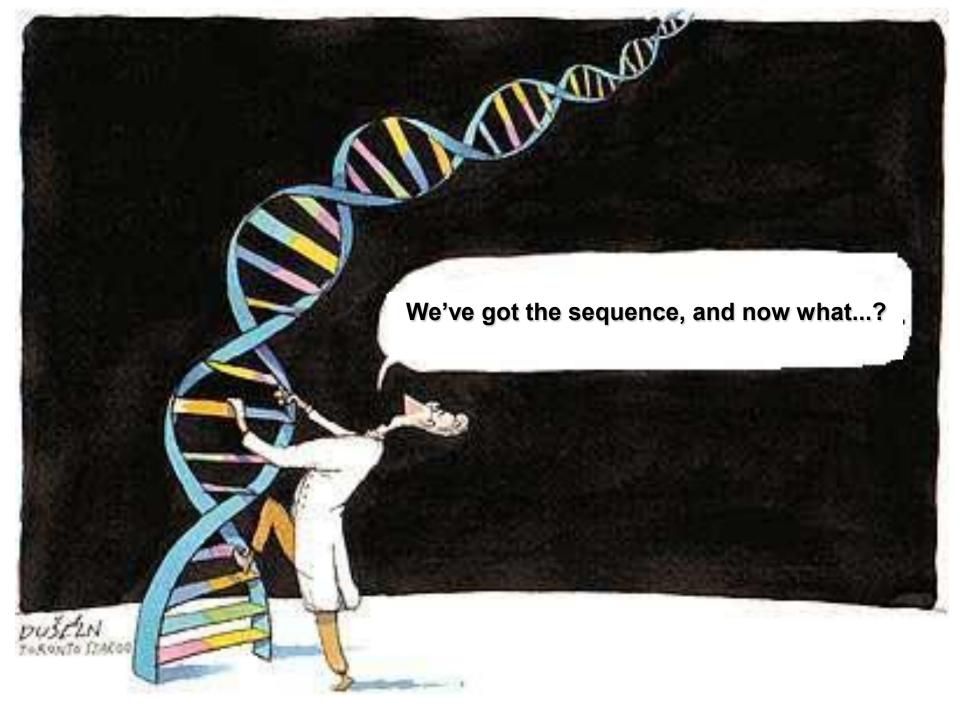
Search GNN

back to top

A-BIC-GIH-NIO-SIT-2

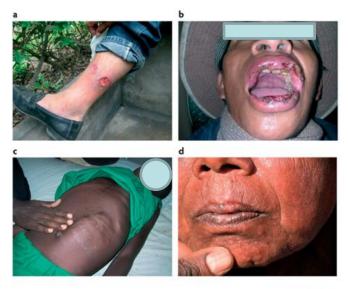

This microbe was isolated from a hydrothermal vent on the ocean floor near Kodakara-Jima Island, Japan. It grows at temperatures up to 100°C (212°F) and is able to live in the presence of

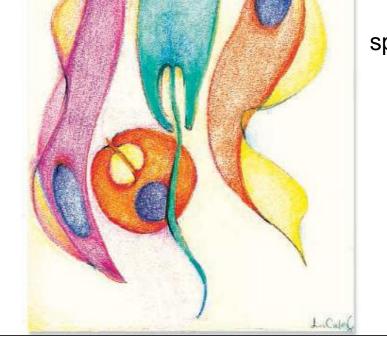
» Sequenced by: National Institute of Technology and Evaluation A. pernix K1 Abstract


» Image: © Y. Sako, Kyoto University.

http://www.genomenewsnetwork.org/resources/sequenced_genomes/g enome_guide_p1a.shtml

180 !! Since 1995


Captor: Comparison of the number of genes in different organisms. In age for use with the Wellcome Trust genome announcement only, no archiving, no sales, no web use. For further clearance contact justifing@wellcome.ac.uk or Tel. 444 (0):20.7611 9947. OWellcome Trust 2001


Trypanosomatid Genomes

El-Sayed et al. 2005; Ivens et al. 2005; Berriman et al., 2005

Among ~8,000 coding genes in *Leishmania* ~6,200 are common to the tritryp (*Leishmania major, Trypanosoma cruzi, Trypanosoma brucei*) ~1,000 are *Leishmania*-specific only ~200 genes (including pseudogenes) are species-specific (*L. major, L. braziliensis, L. infantum*) Ivens et al. 2005; Peacock et al. 2007; Smith et al., 2007

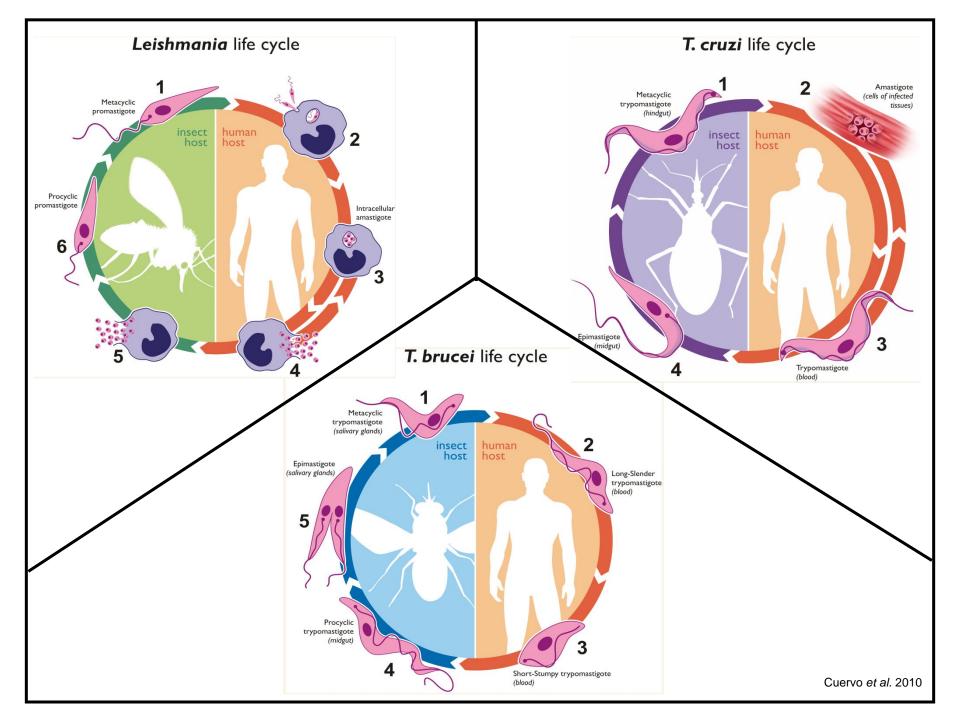
Chappuis et al. 2007 Nature Reviews | Microbiology

Genome, Transcriptome, Proteome

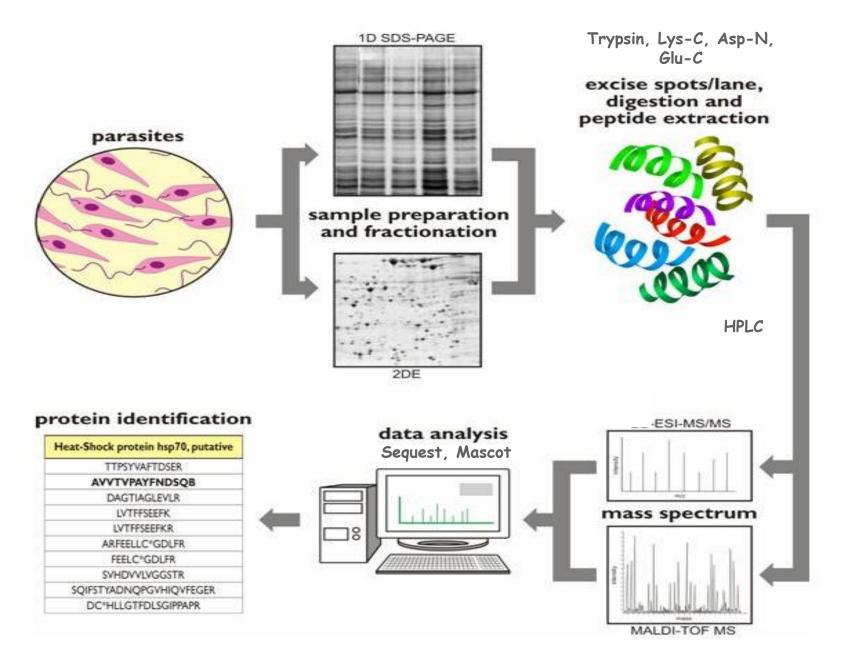
Genome (all genes): What *could* happen Transcriptome (all mRNA's):

What might be happening

Proteome (all proteins): What *is* happening—


One genome

Two proteomes


The complexity of an organism is mainly based on the complexity of its proteome rather than on the complexity of its genome.

The protein expression in a cell is very dynamic. Different proteins are expressed at different times including different isoforms and modifications.

welkome trust Sanger institute						1	Search
🖂 📇 💬 RSS 🔤 Informa	tion Projects Ot	her Services					
P	rotozoan Genomes	5					
	e Sanger Institute protozoan s ojects are immediately and free		entrated on patho	ogens and model organisms. Below is a list	of projects funded	d, underway or completed;	all data from these
Pathogens do	wnloaded directly by FTP. In a	ddition, for those organis	ms being seque	AST server, allowing you to search the sequenced using a cosmid approach, finished and b). Enquiries about sequencing or analysis s	annotated cosm	ids are submitted to EMBI	
Babesia bigemina				Entamoeba moshkovskii		i to <u>Matt Deminan</u> .	
Whole Genome Shotgun	10 Mb	Shotgun Complete	Wellcor	Genome Survey Sequencing	20,000 reads	Shotgun complete	BBSRC
Babesia bovis				Entamoeba terrapinae	I		
ECT Conversion	10.000	1000	NIMO	Genome Survey Sequences	20,000 reads	Shotgun complete	BBSRC
EST Sequencing	10,000 reads	~1600 reads	NWO WOTRO				
				Leishmania braziliensis		Peacock et al. Nat. Genet. 39:	839-47 (2007)
Bodo saltans	- 25 Mb	Company	Malla a	Whole genome shotgun (5x)	~33.5	High quality draft sequence	Wellcome Trust
Whole Genome Sequencing	~35 Mb	Sequencing	Wellcor	Leishmania infantum	I	Peacock et al. Nat. Genet. 39:	839-47 (2007)
Crithidia sp.				Whole genome shotgun (5x)	~33.5	High quality draft	Wellcome Trust
Whole Genome Shotgun	~35 Mb	Sequencing	Wellcor			sequence	
				Leishmania major		Ivens et al. Science 309: 436-	42 (2005)
Dictyostelium discoide	um	Eichinger et al. Nature 435	5: 43-57 (2005)	Chromosomes 4-26,28,30-34,36	27.8	Finished (barring 2 gaps	Beowulf Genomics/We
chromosome 6	1.5 fragment	Draft sequence	Europe:				Trust European Commission
chromosome 5	5.5	Draft sequence	Medical	Leishmania mexicana			<u>European commission</u>
Eimeria tenella				Whole genome shotgun (5x)	~33.5	sequencing	Wellcome Trust
partial genome shotgun	~ 60	draft assembly	BBSRC	Leptomonas seymouri			
Entamoeba dispar				<u>4x coverage</u>	~35	sequencing	Wellcome Trust
Genome Survey Sequencing	20,000 reads	Shotgun complete	BBSRC	Neospora caninum			
Entamoeba histolytic	а	Loftus et al. Nature 433: 80	85-8 (2005)	whole genome shotgun	~55	Sequencing	BBSRC
Whole Genome Shotgun	20 Mb	Draft sequence	Wellcor			Sequencing	
				http://www.san	ger.ac.u	k/Projects/P	athogens/

Typical experiment of proteomic analysis

Proteomic studies on protozoan parasites

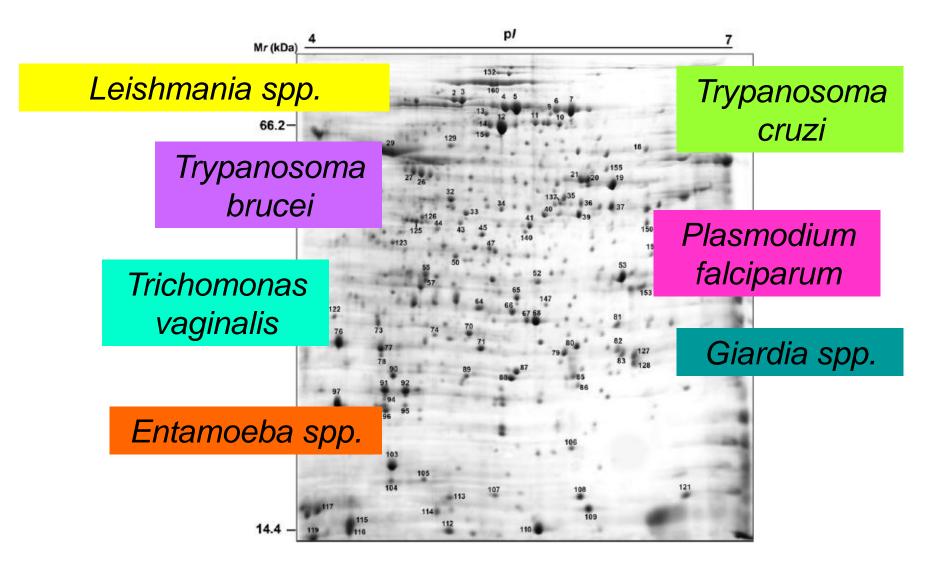
Global proteome profiling

Comparative proteomic analysis of developmental stages

Subcellular proteome, secretome and post-translational modifications

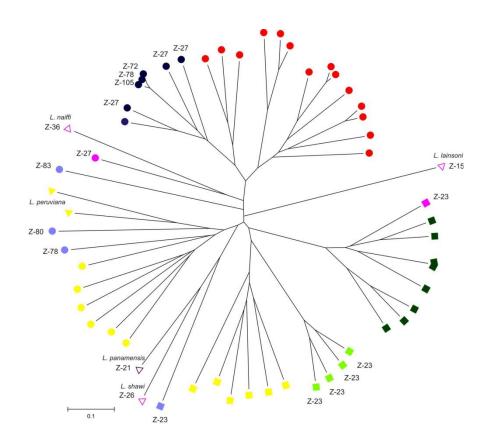
Drug resistance mechanisms and identification of new therapeutic targets

Host-parasite interactions, virulence markers


Proteomic studies on protozoan parasites

Global proteome profiling

Comparative proteomic analysis of developmental stages


- Subcellular proteome, secretome and post-translational modifications
- Drug resistance mechanisms and identification of new therapeutic targets

Host-parasite interactions, virulence markers

Leishmania (Viannia) braziliensis

Molecular polymorphism

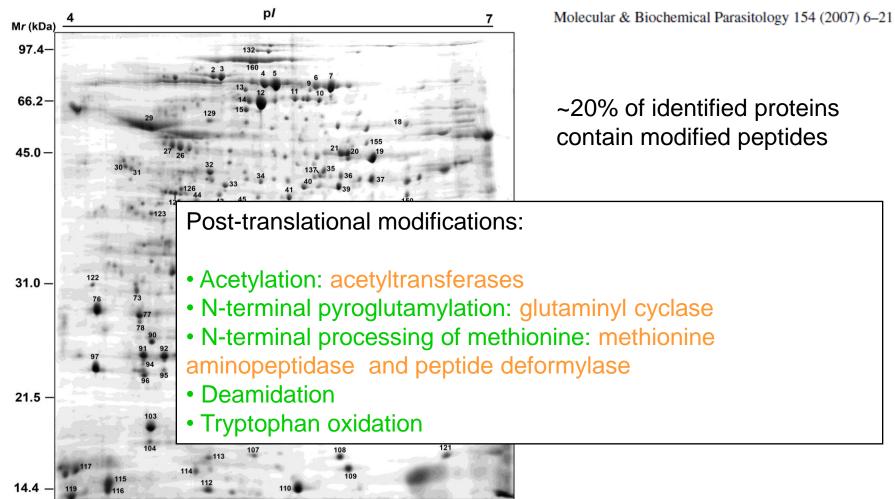
MICROSATELLITES

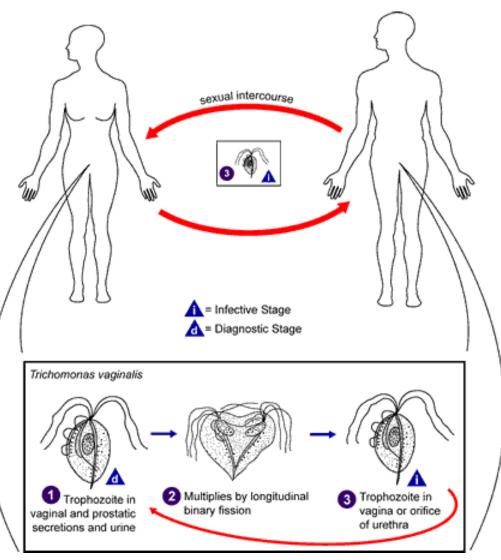
Clinical pleomorphism

Cutaneous lesion

de Oliveira-Neto et al. 2000

Disseminated form




Chappuis *et al.* 2007 *Mucosal lesion*

Proteome analysis of *Leishmania (Viannia) braziliensis* by two-dimensional gel electrophoresis and mass spectrometry

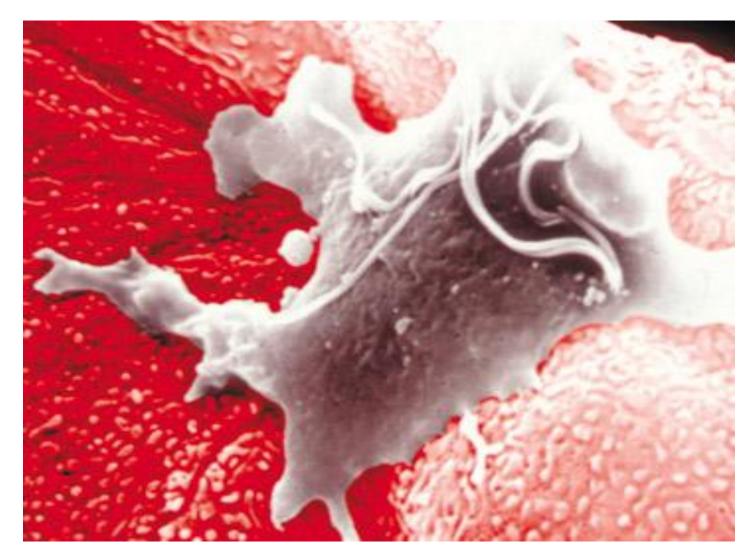
Patricia Cuervo^{a,b,c}, Jose Batista de Jesus^d, Magno Junqueira^e, Leila Mendonça-Lima^d, Luis Javier González^f, Lázaro Betancourt^f, Gabriel Grimaldi Jr.^a, Gilberto Barbosa Domont^e, Octavio Fernandes^b, Elisa Cupolillo^{a,*}

Trichomonas vaginalis

More than 180 million cases/year around the world

Symptomatic women

 Important cofactor in amplification of HIV transmission

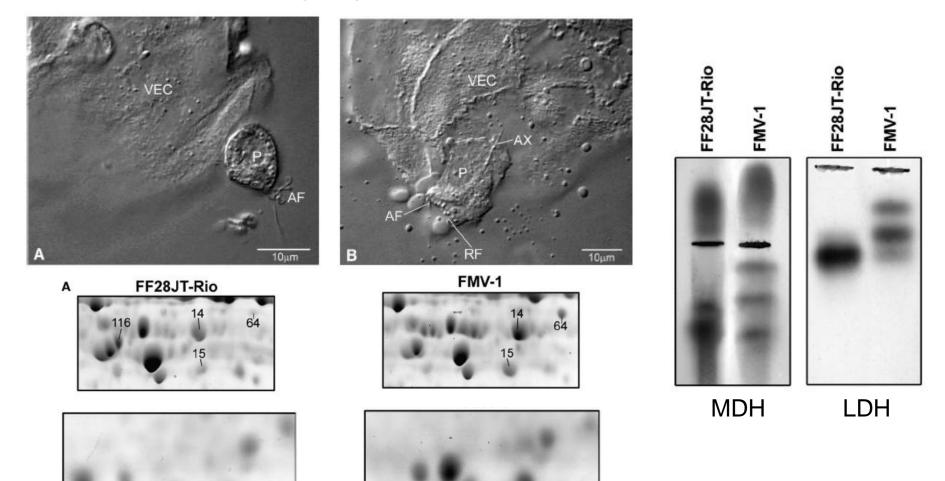

 May induce rupture of placental membranes

• Pre-term delivery

• Low-birth-weight resulting in an increase in infant mortality

Human Urogenital Trichomoniasis

Trichomonas vaginalis


In contact with epithelial cells: ellipsoid \rightarrow amoeboid

Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes Patrícia Cuervo^a, Elisa Cupolillo^a, Constança Britto^b, Luis Javier González^c,

Patrícia Cuervo^a, Elisa Cupolillo^a, Constança Britto^b, Luis Javier González^c, Fernando Costa e Silva-Filho^d, Letícia Coutinho Lopes^e, Gilberto Barbosa Domont^{f,*}, Jose Batista De Jesus^{b,g,*}

JOURNAL OF PROTEOMICS 71 (2008) 109-122

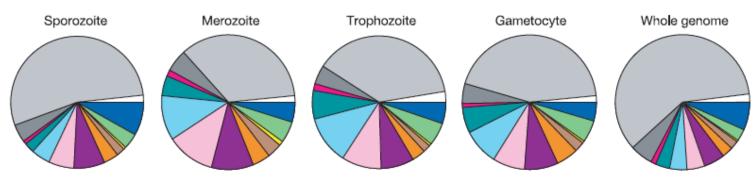
114

Proteomic studies on protozoan parasites

Global proteome profiling

Comparative proteomic analysis of developmental stages

Subcellular proteome, secretome and post-translational modifications


Drug resistance mechanisms and identification of new therapeutic targets

Host-parasite interactions, virulence markers

A proteomic view of the *Plasmodium falciparum* life cycle

NATURE | VOL 419 | 3 OCTOBER 2002 |

Laurence Florens*, Michael P. Washburn†, J. Dale Raine‡, Robert M. Anthony§, Munira Grainger||, J. David Haynes§¶, J. Kathleen Moch§, Nemone Muster*, John B. Sacci§#, David L. Tabb*☆, Adam A. Witney§#, Dirk Wolters†#, Yimin Wu**, Malcolm J. Gardner††, Anthony A. Holder||, Robert E. Sinden‡, John R. Yates*† & Daniel J. Carucci§

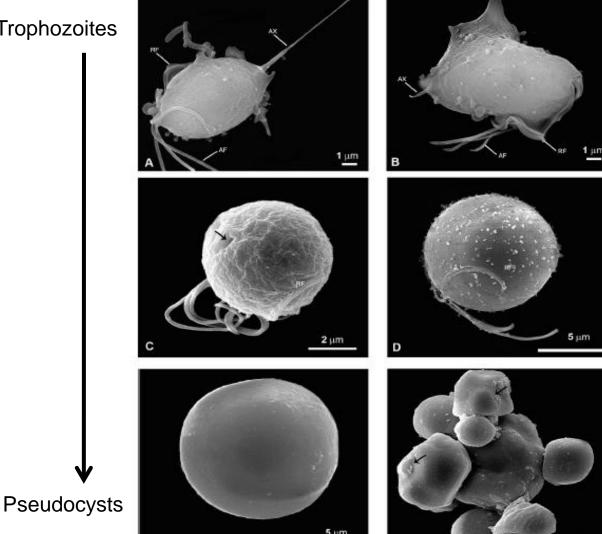
Table 2 Examples on enzymes in stage-specific metabolic pathways											
		Sta	age								
Locus Spz* Mrz* Tpz* Gmt*		Enzyme	EC number†	Reaction catalysed							
End of glycolysi	s										
PF10_0363	1.2	-	2.4	-	Pyruvate kinase	2.7.1.40	P-enolpyruvate to pyruvate				
MAL6P1.160	8.6	66.9	18.8	14.7	Pyruvate kinase						
PF13_0141	46.2	83.9	70.9	78.8	L-lactate dehydrogenase	1.1.1.27	Pyruvate to lactate				
TCA cycle and	oxidative	phospho	rylation								
PF10_0218	12.3	-	-	-	Citrate synthase	4.1.3.7	Acetyl coA + oxaloacetate to citrate				
PF13_0242	3.2	-	16.9	8.8	Isocitrate dehydrogenase (NADP)	1.1.1.41	Isocitrate to 2-oxoglutarate + CO ₂				
PF08_0045	2.9	-	2.2	23.1	2-Oxoglutarate dehydrogenase e1 component	1.2.4.2	2-Oxoglutarate to succinyl CoA				
PF10_0334	-	-	3.5	27.7	Flavoprotein subunit of succinate dehydrogenase	1.3.5.1	Succinate to fumarate				
PFL0630w	3.7	-	-	12.1	Iron-sulphur subunit of succinate dehydrogenase						
PF14_0373	-	-	-	12.7	Ubiquinol cytochrome oxidoreductase	1.10.2.2.	Ubiquinol to cytochrome c reductase in electron transport				
PFB0795w	-	-	-	14.2	ATP synthase F1, α-subunit						
PFI1365w	-	-	-	8.8	Cytochrome c oxidase subunit	1.9.3.1					
PFI1340w	-	-	-	8.8	Fumarate hydratase	4.2.1.2	Fumarate to malate				
MAL6P1.242	30.4	-	-	40.9	Malate dehydrogenase	1.1.1.37	Malate to oxaloacetate				

Plasmodium metabolic pathways can be found at http://www.sites.huji.ac.il/malaria/. Spz, sporozoite; mrz, merozoite; tpz, trophozoite; gmt, gametocyte.

*The sequence coverage (that is, the percentage of the protein sequence covered by identified peptides) measured in each stage is reported.

+ Enzyme Commission (EC) numbers are reported for each protein.

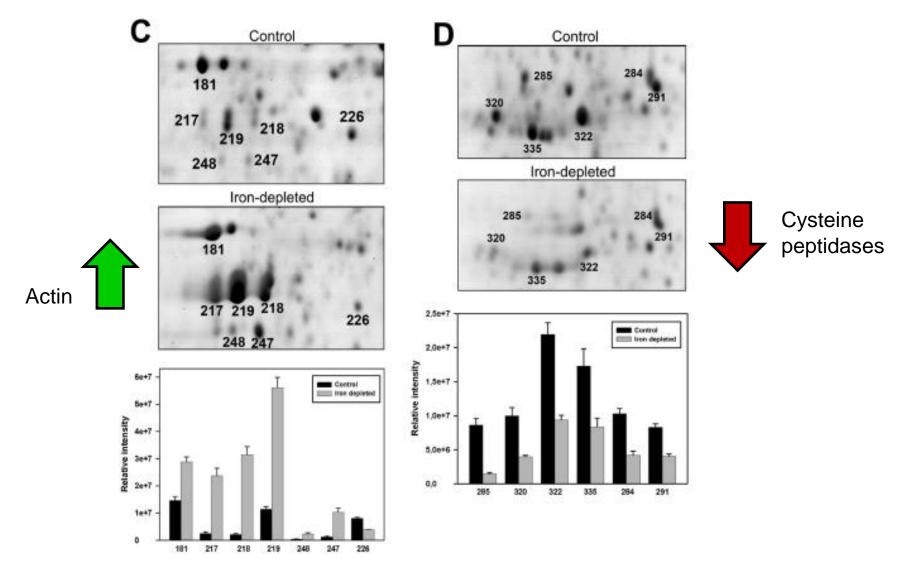
A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis


Jose Batista De Jesus¹, Patrícia Cuervo^{2, 3}, Magno Junqueira⁴, Constança Britto¹, Fernando Costa e Silva-Filho⁵, Maurílio Jose Soares⁶, Elisa Cupolillo², Octavio Fernandes³ and Gilberto Barbosa Domont⁴

Proteomics 2007, 7, 1961–1972

5 µm

Figure 2. Scanning electron microscopy of T. vaginalis FF28Jt-Rio strain cultured by 48 h at 37°C. (A-B) Amoeboid and oval trophozoites commonly found in axenic iron-rich medium. (C-F) Morphological transformaspherical shapes tion to observed after culture in axenic iron-depleted medium. (C-D) Micrographs show internalization process of anterior and recurrent flagella. (C) The axostyle is not seen in the rounded cells, and an arrow shows the possible location of axostyle retraction. (F) Some irregular forms with internalized flagella, without external visible axostyle and presenting protuberances (arrows), are also observed. AX, axostyle; AF, anterior flagella; RF, recurrent flagellum.


Trophozoites

A further proteomic study on the effect of iron in the human pathogen *Trichomonas vaginalis*

Jose Batista De Jesus¹, Patrícia Cuervo^{2, 3}, Magno Junqueira⁴, Constança Britto¹, Fernando Costa e Silva-Filho⁵, Maurílio Jose Soares⁶, Elisa Cupolillo², Octavio Fernandes³ and Gilberto Barbosa Domont⁴

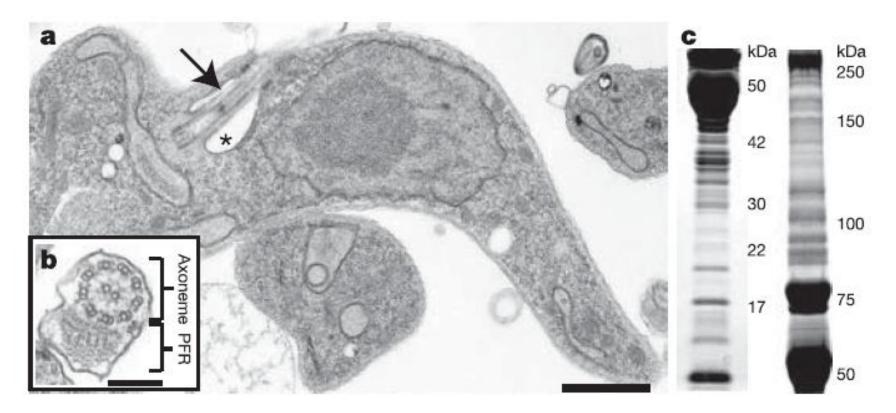
Proteomics 2007, 7, 1961–1972

Proteomic studies on protozoan parasites

Global proteome profiling

Comparative proteomic analysis of developmental stages

Subcellular proteome, secretome and post-translational modifications

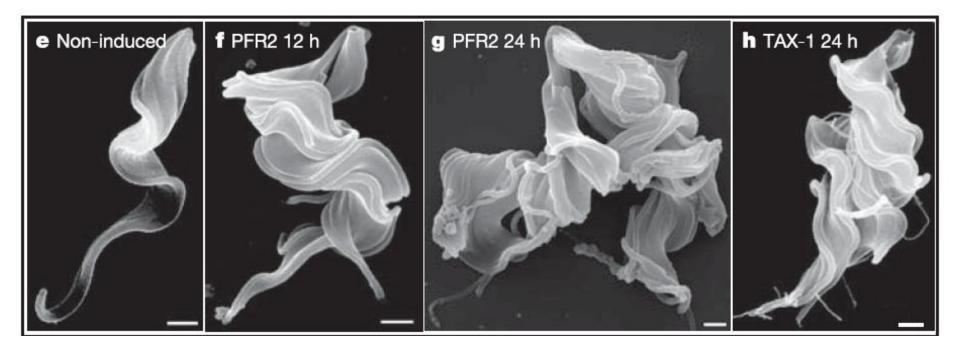

Drug resistance mechanisms and identification of new therapeutic targets

Host-parasite interactions, virulence markers

Flagellar motility is required for the viability of the bloodstream trypanosome

Richard Broadhead¹*, Helen R. Dawe²*, Helen Farr²*, Samantha Griffiths²*, Sarah R. Hart³*, Neil Portman²*, Michael K. Shaw², Michael L. Ginger², Simon J. Gaskell³, Paul G. McKean¹ & Keith Gull²

Nature 2006; 440(7081):224-7.

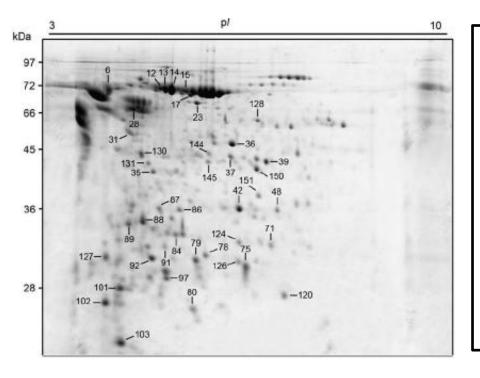

Proteomic analysis

Flagellar motility is required for the viability of the bloodstream trypanosome

Richard Broadhead¹*, Helen R. Dawe²*, Helen Farr²*, Samantha Griffiths²*, Sarah R. Hart³*, Neil Portman²*, Michael K. Shaw², Michael L. Ginger², Simon J. Gaskell³, Paul G. McKean¹ & Keith Gull²

Nature 2006; 440(7081):224-7.

RNAi


Lethal failure of cytokinesis

Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes

Patricia Cuervo^{a,*}, Jose B. De Jesus^{b,c,f}, Leonardo Saboia-Vahia^{b,e}, Leila Mendonça-Lima^e, Gilberto B. Domont^d, Elisa Cupolillo^{a,*}

JOURNAL OF PROTEOMICS 73 (2009) 79-92

Putative virulence factors detected in the extracellular medium collected from promastigotes of *L. (V.) braziliensis*

Immunomodulating proteins Cyclophilin a IgE-dependent histamine-releasing factor, putative	NCBI accession No. XP_001561947 XP_001565400
Signal Transduction proteins Histidine secretory acid phosphatase Activated protein kinase C receptor LACK Pyruvate kinase Intracellular survival Proteasome activator protein pa26, putative Heat shock protein hsp70 Proteasome alpha 1 subunit, putative Enolase Proteasome alpha 5 subunit, putative Putative elongation factor 1 beta Heat shock protein hsp70 – related protein. Peroxiredoxin Tryparedoxin peroxidase 2	XP_001569291 XP_001566321 XP_843114 XP_001568187 XP_001566325 XP_001566325 XP_001563419 XP_001567859 XP_001564363 XP_001566867 XP_001562236
	AAV31765

Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes

Patricia Cuervo^{a,*}, Jose B. De Jesus^{b, c,f}, Leonardo Saboia-Vahia^{b,e}, Leila Mendonça-Lima^e, Gilberto B. Domont^d, Elisa Cupolillo^{a,*}

JOURNAL OF PROTEOMICS 73 (2009) 79-92

1 – Peptides automatically identified in the Mascot® database by using the GPS Explorer™ Software, and confirmed by manual sequencing.											
Protein name	NCBI accession no.	Mr theor. da (Mr exp. kDa)	pI theor. (pI exp.)	Pep. identified by MS/MS	Pep. sequence	Error± da	Ion Score	Protein Score	Signal P prediction ^c	Secretome P prediction ^d	Target P prediction ^e
Histidine secretory acid phosphatase,	XP_001569291	48438 (70.8)	5.19 (4.29)	3	YNDPSLVESPLFPSTR ADC*VLNLYDVAAAFEASGR	0.10	69 23	104	No	Yes (0.710)	NSS
putative Heat-shock protein hsp70, putative	XP_001566325	71232 (71.9)	5.40 (5.09)	4	TIADNEPVPLR LVTFFSEEFKR FEELC*GDLFR	0.07 0.05 0.05	13 17 25	188	No	Yes G– (0.526)	NSS
Protein disulfide	XP_001569341	52357	5.02	4	SQIFSTYADNQPGVHIQVFEGER DC*HLLGTFDLSGIPPAPR GFPTLYVFR	0.11 0.08 0.06	55 93 34	101	Yes (0.999)	No	S (0.761
isomerase		(53.5)	(4.41)		SQVLM*TYIDGDQYRPVSR QLGIPEGAEFPAFVIDHDR	0.10 0.09	11 40				
Pyruvate dehydrogenase E1 beta subunit, putative	XP_001565729	36269 (40.9)	5.23 (5.02)	4	QL <u>GIPEGAEFPAFVID</u> HDR DAIQSALDEELAR VFVIGEEVAQYQGAYK	0.11 0.08 0.10	18 60 65	181	No	Yes (0.789)	NSS
			. ,		DITLIGFSR LAAEGVQAEVINLR	0.06 0.08	20 36				
Activated protein kinase c receptor (LACK)	XP_001566321	34424 (35.3)	5.94 (5.46)	8	GWVTSLAC*PQQAGSYIK HSVDSDYGLPNHR DVLAVAFSPDDR	0.08 0.07 0.05	46 32 59	350	No	Yes G–/G+ (0.872/0.665)	NSS

5% secreted by classic pathway

Unconventional secretion mechanisms

Proteomic studies on protozoan parasites

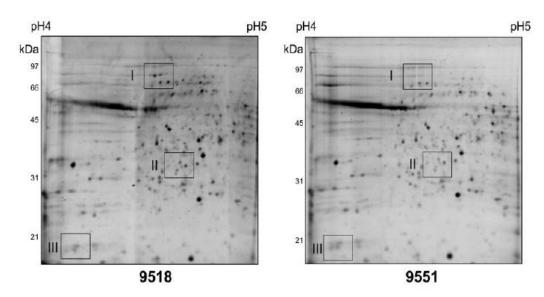
Global proteome profiling

Comparative proteomic analysis of developmental stages

Subcellular proteome, secretome and post-translational modifications

Drug resistance mechanisms and identification of new therapeutic targets

Host-parasite interactions, virulence markers


Molecular & Cellular Proteomics 6:88–101, 2007.

Α

A Proteomics Screen Implicates HSP83 and a Small Kinetoplastid Calpain-related Protein in Drug Resistance in *Leishmania donovani* Clinical Field Isolates by Modulating Drug-induced Programmed Cell Death*

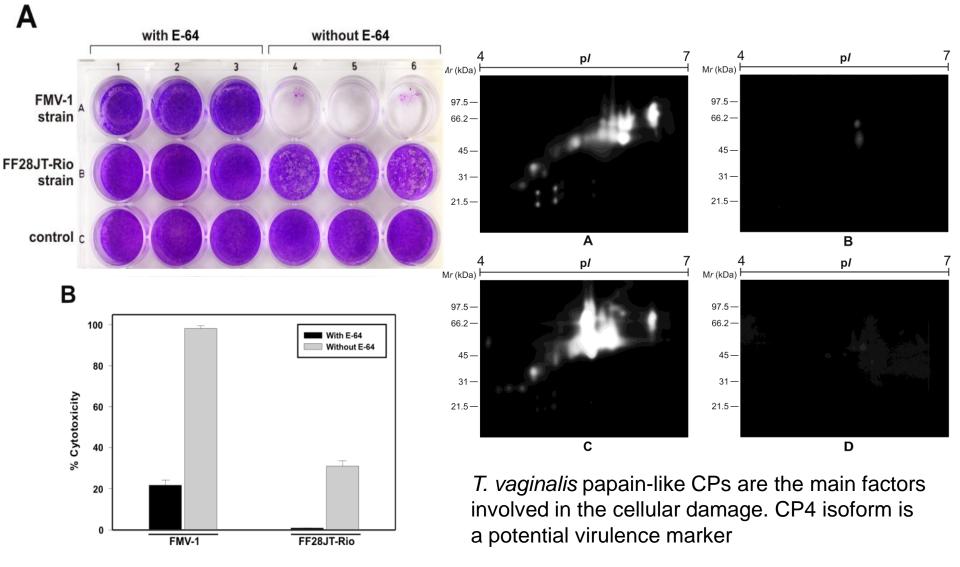
Baptiste Vergnes‡§, Benjamin Gourbal‡¶, Isabelle Girard‡, Shyam Sundar∥, Jolyne Drummelsmith‡**, and Marc Ouellette‡ ‡‡

HSP83 interferes with mitochondrial membrane potential increasing antimoniate resistance and reducing drugmediated programmed cell death.

SKCRP14.1 promotes antimoniate-induced programmed cell death, but protects against miltefosine-mediated PCD.

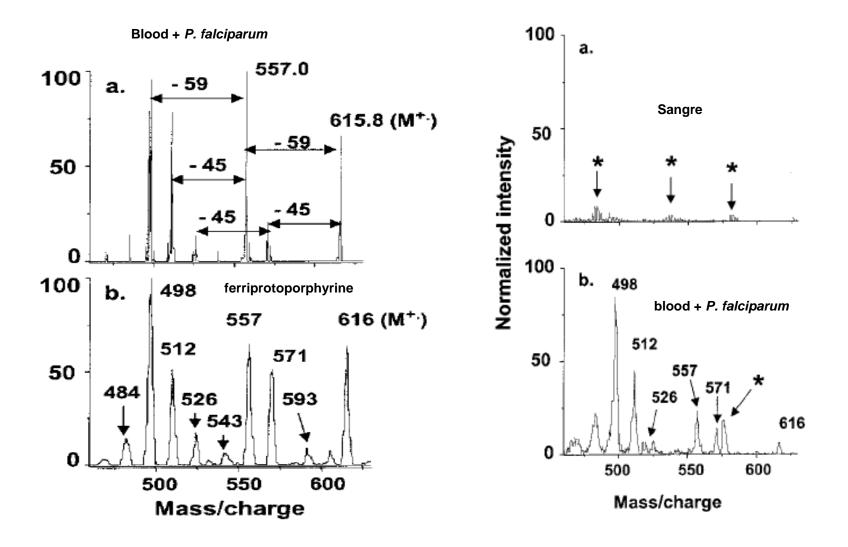
FIG. 2. Proteomics analyses of resistance in *L. donovani*. *A*, representative 2D gels (pH 4–5) comparing *L. donovani* 9518 resistant and *L. donovani* 9551 sensitive strains. *B, insets (I–III)* corresponding to zoomed gel areas with spots showing a difference in protein expression between the two strains.

Proteomic studies on protozoan parasites


- Global proteome profiling
 - Comparative proteomic analysis of developmental stages
- Subcellular proteome, secretome and post-translational modifications
- Drug resistance mechanisms and identification of new therapeutic targets

Host-parasite interactions, virulence markers

Cysteine Peptidase Expression in *Trichomonas vaginalis* Isolates Displaying High- and Low-Virulence Phenotypes


J. Proteome Res., 2009, 8 (3), 1555-1564.

Jose Batista De Jesus, Patrícia Cuervo, Constança Britto, Leonardo Sabóia-Vahia, Fernando Costa e Silva-Filho, Andre Borges-Veloso, Débora Barreiros Petrópolis, Elisa Cupolillo, and Gilberto Barbosa Domont.

Detection of Malaria Parasites in Blood by Laser Desorption Mass Spectrometry

P. A. Demirev,*,† A. B. Feldman,† D. Kongkasuriyachai,* P. Scholl,† D. Sullivan, Jr.,* and N. Kumar*

RAPID DETECTION OF MALARIA INFECTION IN VIVO BY LASER DESORPTION MASS SPECTROMETRY

PETER F. SCHOLL,* DARIN KONGKASURIYACHAI,* PLAMEN A. DEMIREV, ANDREW B. FELDMAN, JEFFREY S. LIN, DAVID J. SULLIVAN, JR., and NIRBHAY KUMAR

Am. J. Trop. Med. Hyg., 71(5), 2004, pp. 546-551

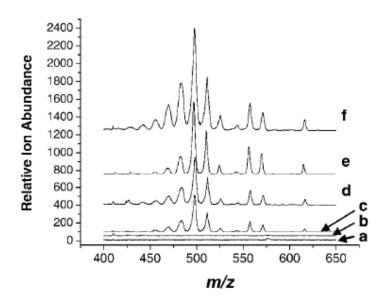


FIGURE 1. Laser desorption mass spectra of a heme standard and blood samples from a mouse inoculated with 10^6 parasite-infected erythrocytes. The heme molecular ion (m/z 616, M^+) fragments via consecutive cleavages of the two propionic acid side chains to yield m/z 571 (M-COOH), 557 (M-CH₂COOH), 512 (M-CH₂COOH,-COOH), and 498 (M-CH₂CH₂COOH,-COOH). a, Day 0, preinfection; b, Day 1; c, Day 2; d, Day 4; e, Day 6; f, Heme standard, 1.25 pmoles. Each spectrum represents the sum of 300 individual laser shot spectra.

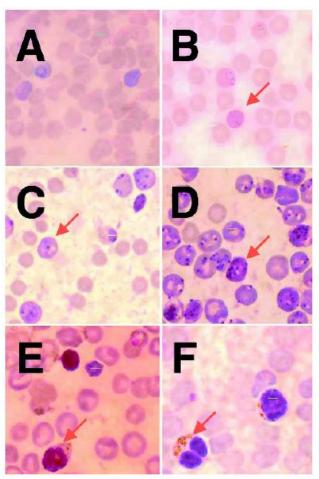
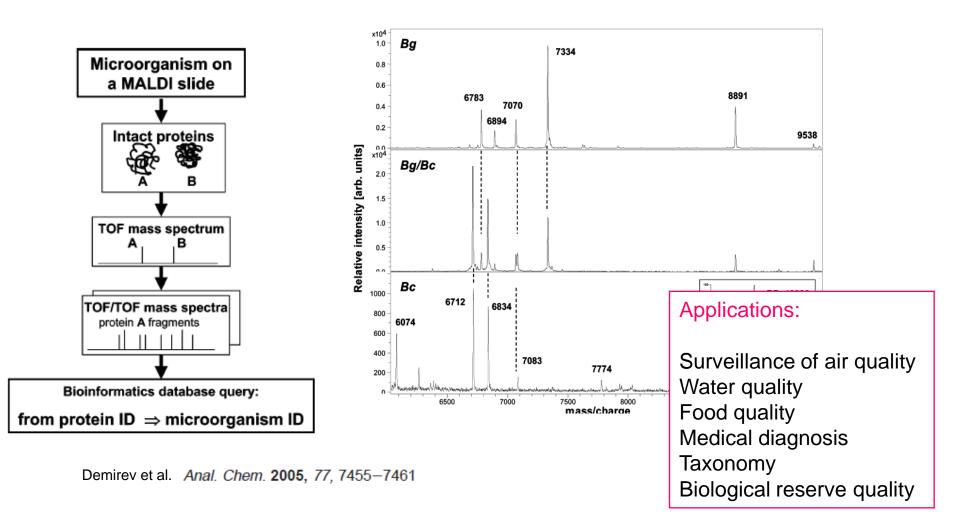



FIGURE 3. Light microscopy of Giemsa-stained thin blood smears from the mouse in Figure 1 and Figure 2a during the time course of the asynchronous *Plasmodium yoelii* infection. The day 24 sample (**F**) was microscopically scored as parasite negative but the laser desorption mass spectrometry heme signal persisted due to the presence of hemozoin crystal-filled leukocytes. **Arrows** indicate hemozoin crystals. **A**, Day 2. An erythrocyte bearing a single-ring stage parasite is visible in the upper left quadrant. **B**, Day 4. **C**, Day 10. **D**, Day 18. **E**, Day 20. **F**, Day 24. Mouse erythrocytes are 3–5 µm in diameter.

Intact microorganisms identification using MALDI-TOF (matrixassisted laser desorption/ionization-time-of-flight mass spectrometry) - BIOMARKERS

- Holland et al. Rapid Commun Mass Spectrom. 1996;10(10):1227-32.
- Claydon et al. Nat Biotechnol. 1996 Nov;14(11):1584-6.

Basic research, biomarker description and characterization Development, Entry in a chain of rational design

Biomarker validation

ηſ